534 research outputs found

    Inequivalent representations of commutator or anticommutator rings of field operators and their applications

    Full text link
    Hamiltonian of a system in quantum field theory can give rise to infinitely many partition functions which correspond to infinitely many inequivalent representations of the canonical commutator or anticommutator rings of field operators. This implies that the system can theoretically exist in infinitely many Gibbs states. The system resides in the Gibbs state which corresponds to its minimal Helmholtz free energy at a given range of the thermodynamic variables. Individual inequivalent representations are associated with different thermodynamic phases of the system. The BCS Hamiltonian of superconductivity is chosen to be an explicit example for the demonstration of the important role of inequivalent representations in practical applications. Its analysis from the inequivalent representations' point of view has led to a recognition of a novel type of the superconducting phase transition.Comment: 25 pages, 6 figure

    Specific heat of heavy fermion CePd2Si2 in high magnetic fields

    Full text link
    We report specific heat measurements on the heavy fermion compound CePd2Si2 in magnetic fields up to 16 T and in the temperature range 1.4-16 K. A sharp peak in the specific heat signals the antiferromagnetic transition at T_N ~ 9.3 K in zero field. The transition is found to shift to lower temperatures when a magnetic field is applied along the crystallographic a-axis, while a field applied parallel to the tetragonal c-axis does not affect the transition. The magnetic contribution to the specific heat below T_N is well described by a sum of a linear electronic term and an antiferromagnetic spin wave contribution. Just below T_N, an additional positive curvature, especially at high fields, arises most probably due to thermal fluctuations. The field dependence of the coefficient of the low temperature linear term, gamma_0, extracted from the fits shows a maximum at about 6 T, at the point where an anomaly was detected in susceptibility measurements. The relative field dependence of both T_N and the magnetic entropy at T_N scales as [1-(B/B_0)^2] for B // a, suggesting the disappearance of antiferromagnetism at B_0 ~ 42 T. The expected suppression of the antiferromagnetic transition temperature to zero makes the existence of a magnetic quantum critical point possible.Comment: to be published in Journal of Physics: Condensed Matte

    Superconductivity mediated by a soft phonon mode: specific heat, resistivity, thermal expansion and magnetization of YB6

    Full text link
    The superconductor YB6 has the second highest critical temperature Tc among the boride family MBn. We report measurements of the specific heat, resistivity, magnetic susceptibility and thermal expansion from 2 to 300 K, using a single crystal with Tc = 7.2 K. The superconducting gap is characteristic of medium-strong coupling. The specific heat, resistivity and expansivity curves are deconvolved to yield approximations of the phonon density of states, the spectral electron-phonon scattering function and the phonon density of states weighted by the frequency-dependent Grueneisen parameter respectively. Lattice vibrations extend to high frequencies >100 meV, but a dominant Einstein-like mode at ~8 meV, associated with the vibrations of yttrium ions in oversized boron cages, appears to provide most of the superconducting coupling and gives rise to an unusual temperature behavior of several observable quantities. A surface critical field Hc3 is also observed.Comment: 29 pages, 5 tables, 17 figures. Accepted for publication in Phys. Rev.

    Superconducting Diamagnetic Fluctuations in MgB2

    Full text link
    The fluctuating diamagnetic magnetization Mfl at constant field H as a function of temperature and the isothermal magnetization Mfl vs H are measured in MgB2, above the superconducting transition temperature. The expressions for Mfl in randomly oriented powders are derived in the Gaussian approximation of local Ginzburg-Landau theory and used for the analysis of the data. The scaled magnetization Mfl/H^{1/2}*T is found to be field dependent. In the limit of evanescent field the behaviour for Gaussian fluctuations is obeyed while for H>~ 100 Oe the field tends to suppress the fluctuating pairs, with a field dependence of Mfl close to the one expected when short wavelength fluctuations and non-local electrodynamic effects are taken into account. Our data, besides providing the isothermal magnetization curves for T>Tc(0) in a BCS-type superconductor such as MgB2, evidence an enhancement of the fluctuating diamagnetism which is related to the occurrence in this new superconductor of an anisotropic spectrum of the superconducting fluctuations.Comment: Tex file, 4 pages, 3 ps figures, submitted to Phys. Rev. Let

    SO(5) superconductor in a Zeeman magnetic field: Phase diagram and thermodynamic properties

    Full text link
    In this paper we present calculations of the SO(5) quantum rotor theory of high-Tc_{c} superconductivity in Zeeman magnetic field. We use the spherical approach for five-component quantum rotors in three-dimensional lattice to obtain formulas for critical lines, free energy, entropy and specific heat and present temperature dependences of these quantities for different values of magnetic field. Our results are in qualitative agreement with relevant experiments on high-Tc_{c} cuprates.Comment: 4 pages, 2 figures, to appear in Phys. Rev. B, see http://prb.aps.or

    Unusual effects of anisotropy on the specific heat of ceramic and single crystal MgB2

    Full text link
    The two-gap structure in the superconducting state of MgB_2 gives rise to unusual thermodynamic properties which depart markedly from the isotropic single-band BCS model, both in their temperature- and field dependence. We report and discuss measurements of the specific heat up to 16 T on ceramic, and up to 14 T on single crystal samples, which demonstrate these effects in the bulk. The behavior in zero field is described in terms of two characteristic temperatures, a crossover temperature Tc_pi ~ 13 K, and a critical temperature Tc = Tc_sigma ~ 38 K, whereas the mixed-state specific heat requires three characteristic fields, an isotropic crossover field Hc2_pi ~ 0.35 T, and an anisotropic upper critical field with extreme values Hc2_sigma_c ~ 3.5 T and Hc2_sigma_ab ~ 19 T, where the indexes \pi and \sigma refer to the 3D and 2D sheets of the Fermi surface. Irradiation-induced interband scattering tends to move the gaps toward a common value, and increases the upper critical field up to ~ 28 T when Tc = 30 K.Comment: 31 pages, 9 figures. Accepted in the Physica C special issue on MgB

    Thermodynamic transitions in inhomogeneous d-wave superconductors

    Full text link
    We study the spectral and thermodynamic properties of inhomogeneous d-wave superconductors within a model where the inhomogeneity originates from atomic scale pair disorder. This assumption has been shown to be consistent with the small charge and large gap modulations observed by scanning tunnelling spectroscopy (STS) on BSCCO. Here we calculate the specific heat within the same model, and show that it gives a semi-quantitative description of the transition width in this material. This model therefore provides a consistent picture of both surface sensitive spectroscopy and bulk thermodynamic properties.Comment: 4 pages, 4 figure

    Phase fluctuations and the pseudogap in YBa2Cu3Ox

    Full text link
    The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa2Cu3Ox single crystals and Monte-Carlo simulations of the anisotropic 3D-XY model. We directly show that Tc of underdoped YBa2Cu3Ox is strongly suppressed from its mean-field value (Tc-MF) by phase fluctuations of the superconducting order parameter. For overdoped YBa2Cu3Ox fluctuation effects are greatly reduced and Tc ~ Tc-MF . We find that Tc-MF exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.Comment: 9 pages, 3 Figure
    corecore